A technique to assist guidance techniques for a free-flying inspection vehicle for inspecting a host satellite. The method solves analytically in closed form for relative motion about a circular primary for solutions that are non-drifting, i.e., the orbital periods of the two vehicles are equal, computes the impulsive maneuvers in the primary radial and cross-track directions, and parameterizes these maneuvers and obtain solutions that satisfy constraints, for example collision avoidance or direction of coverage, or optimize quantities, such as time or fuel usage. Apocentral coordinates and a set of four relative orbital parameters are used. The method separates the change in relative velocity (maneuvers) into radial and crosstrack components and uses a waypoint technique to plan the maneuvers.